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ON THE VOLUMES OF SIMPLE FINSLER MANIFOLDS

Chang-Wan Kim

Abstract. We prove that any simple Finsler manifolds with the
same distances between points of the boundary have the same Holmes-
Thompson volume.

1. Introduction

A compact Finsler manifold (M,F ) with boundary ∂M is simple if
it is simply connected, any geodesic has no conjugate points and ∂M
is strictly convex; that is, the second fundamental form of the bound-
ary is positive definite at every boundary point. Such a manifold is
diffeomorphic to a ball in Rn. The boundary rigidity problem consists
in determining a compact, Riemannian manifold with boundary, up to
isometry, by knowing the boundary distance function between boundary
points. Michel [14] conjectured that all simple manifolds are boundary
rigid. This is known for simple domains of Euclidean space, simple do-
mains of an open hemisphere, simple domains of symmetric spaces of
negative curvature (see [10]). Recently Pestov and Uhlmann [15] proved
a conjecture due to Michel in the two-dimensional Riemannian case.

However in [4] Colbois, Newberger, and Verovic have a negative an-
swer in Finsler case for boundary rigidity, and hence the rigidity problem
in Finsler geometry requires more scrutiny (cf. [1, 3, 5, 8, 11, 16]). The
author and Yim [12] proved boundary rigidity for simple subdomains
with vanishing S-curvature on Minkowskian space. In order to study
the analogous problems in the Finslerian case we ask the following ques-
tion (see [2, Conjecture C]).

Question. Let (M,F0) and (M,F1) be simple Finsler manifolds with
the same boundary ∂M. If distF1(p, q) ≥ distF0(p, q) for all p, q ∈ ∂M,
then volF1(M) ≥ volF0(M).
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The volume minimizing property is related to the notion of filling
volume introduced in [7]. In short, the filling volume of a manifold
equipped with a distance function is the greatest lower bound for the
volume of a Finsler space spanning the given manifold as a boundary
and inducing boundary distances no less than given distances on it. Our
main theorem below a little improves Ivanov’s result ([9, Main Theorem])
into Finsler manifolds with dimension greater than two.

Theorem 1.1. Any simple Finsler manifolds with same distances be-
tween points of the boundary have the same Holmes-Thompson volume.

Similar Finsler volume results in the reversible case were obtained
recently by Koehler [13].

The author would like to express their sincere thanks to the referee for
reading and giving their valuable comments that improved this article.

2. Preliminaries

In this section, we shall recall some well-known facts about Finsler
geometry. See [17], for more details. Let M be an n-dimensional smooth
manifold and TM denote its tangent bundle. A Finsler structure on
a manifold M is a map F : TM → [0,∞) which has the following
properties

• Regularity: F is smooth on T̃M := TM \ {0};
• Positive homogeneity: F (x, λy) = λF (x, y), for all λ > 0, y ∈
TxM ;
• Strongly convexity: The fundamental quadratic form

gij(x, y)dxi ⊗ dxj , gij(x, y) :=
1

2

∂2F 2

∂yi∂yj
(x, y)

is positive definite for all (x, y) ∈ T̃M .

A manifold M endowed with a Finsler structure will be called a Finsler
manifold. Note that we never require reversibility and smoothness at
the zero section. The Finsler structure F induces a distance function
distF on M for which (M,distF ) is a length space.

Let π∗TM denote the pull-back of the tangent bundle TM by π :

T̃M → M . Denote vectors in π∗TM by (v;w), v ∈ T̃M,w ∈ Tπ(v)M .

For the sake of simplicity, we denote by ∂i|v = (v; ∂
∂xi
|x), v ∈ TxM,

the natural local basis for π∗TM . The Finsler metric F defines the
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fundamental tensor g in π∗TM by gF (∂i|v, ∂j |v) := gvij := gij(x, y) where

v = yi ∂
∂xi
|x.

Let ω =
∑n

i=1
∂F
∂yi

dxi be the Hilbert 1-form on the unit tangent bun-

dle SM of M. In local coordinates, we have the symplectic volume form

dV = ω ∧ (dω)n−1

on SM. Let Xω be the Reeb field of the Hilbert 1-form ω. In particular
we have the geodesic flow of Finsler metric, i.e., the flow with infinites-
imal generator Xω, consists of contact diffeomorphisms. The geodesic
flow on SM is denoted by φt, and is given by φt(v) := γ̇v(t), where γv(t)
denotes the geodesic with initial point γv(0) and initial vector v = γ̇v(0).
Since LXωω = 0, the symplectic volume form on SM is invariants un-
der the geodesic flows of Finsler metric. The Holmes-Thompson volume
volF (M) of an n-dimensional compact Finsler manifold is the symplec-
tic volume of the unit tangent bundle divided by the volume of the
Euclidean unit sphere of dimension n− 1.

3. The geodesic conjugacy

The purpose of this section is to investigate the geodesic conjugacy
maps between manifolds. Two complete Finsler manifoldsMi = (M,Fi), i =
0, 1, are said to have Ck-geodesic conjugacy if there is a Ck-homeomorphism

Ψ : SM0 → SM1

such that

φM1
t ◦Ψ = Ψ ◦ φM0

t ,

for all t ∈ R, where φMi
t represents the geodesic flows on SMi, i = 0, 1.

Any dynamical properties defined by the geodesic flow are the same for
both manifolds, and it is tempting to ask if geodesic conjugacy manifolds
must be isometric. In general the answer to the question above is no
(see [6] for a counterexample).

Proposition 3.1. Let F0 and F1 be two simple Finsler metrics on
the compact manifold M with boundary ∂M such that distF0(p, q) =
distF1(p, q) for all p, q ∈ ∂M. Then there exists a diffeomorphism ψ :
M →M such that ψ|∂M = Id and F0 = ψ∗F1 on T∂MM.

Proof. Let (x, y) ∈ T (∂M) and take a curve γ : [0, ε)→ ∂M adapted
to (x, y). Since γ takes values in ∂M for all t ∈ [0, ε) we have

distF0

(
x, γ(t)

)
= distF1

(
x, γ(t)

)
.
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It follows that

F0(x, y) = lim
t→0+

=
distF0

(
x, γ(t)

)
t

= lim
t→0+

=
distF1

(
x, γ(t)

)
t

= F1(x, y).

Thus by the polarization identity we see that already we have F0 = F1

on T (∂M). This is not good enough though; in general we will need to
modify F1 before we obtain the stronger statement of the proposition.

Let nF0(x) denote the unit inward pointing normal with respect to

g
nF0

(x)

F0
, and define the boundary exponential map

exp∂(M,F0) : ∂M × {t ≥ 0} →M, (x, t) 7→ expx
(
t · nF0(x)

)
,

which maps a neighborhood of ∂M×{0} diffeomorphically onto a neigh-
borhood of ∂M. Now define

ψ := exp∂(M,F1) ◦ exp−1∂(M,F0)
.

Then on some collar neighborhood U of ∂M, it is a diffeomorphism.
It can be shown (although this requires a bit of effort) that it is pos-
sible to extend smoothly across all of M. Assume this is done. Then
we claim ψ : M → M satisfies the requirements of the proposition.
Indeed, ψ|∂M = Id, and moreover given x ∈ ∂M, if γF0 is the unique
F0-geodesic adapted to

(
x, nF0(x)

)
and similarly γF1 is the unique F1-

geodesic adapted to
(
x, nF1(x)

)
then ψ(γF0) = γF1 . Hence by differen-

tiating we have dxψ(nF0) = nF1 . Observe if x ∈ ∂M and y ∈ Tx(∂M)
then

gψ∗F1

(
y, nF0(x)

)
= gF1

(
dxψ(y), dxψ(nF0(x))

)
= gF1

(
y, nF1(x)

)
= 0,

since dxψ|Tx(∂M) = Id, and thus ψ∗F1 has unit inward normal vector
field equal to nF0(x). Next, for x ∈ ∂M we have the decomposition

TxM = Tx(∂M)⊕ R · nF0(x),

since Tx(∂M) is a codimension one vector subspace of TxM and 0 6=
nF0(x) ∈ TxM \ Tx(∂M). Finally, since F1 (and hence ψ∗F1, since dxψ
is the identity on Tx(∂M)) and F0 agree on T (∂M), it follows that
F0 = ψ∗F1 on T∂MM, as we wanted to show.

As an immediate consequence of this proposition, we have:

Lemma 3.2. For Mi = (M,Fi), i = 0, 1, as above, M have C∞-
geodesic conjugacy Ψ with Ψ|S∂MM = Id .
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Proof. By proposition 3.1 we may assume F0 = F1 on T∂MM. Since
all geodesics hit the boundary, we can label them by their initial vector

v ∈ S∂MM. Given v ∈ T̃M, there exist a unique geodesic γv adapted
to v; moreover γv is maximally defined on a finite interval [τ−(v), τ+(v)]
with γv

(
τ±(v)

)
∈ ∂M. Define Ψ from SM0 to SM1 by

Ψ(v) := φM1

−τ−(v) ◦ φ
M0

τ−(v)(v), v ∈ SM0.

Since τ−|S∂MM = 0, we certainly have

φM1

−τ−(v) ◦ φ
M0

τ−(v) = Id, v ∈ S∂MM.

Now it remains only to check that Ψ is actually a time preserving
geodesic conjugacy, and for this it is enough to check on SM. Given
v ∈ SM0 and t ∈ [τ−(v), τ+(v)], observe firstly that

τ−
(
φM0
t (v)

)
= τ−(v)− t,

and thus we have

Ψ
(
φM0
t (v)

)
= φM1

−τ−(φ
M0
t (v))

◦ φM0

τ−(φ
M0
t (v))

(
φM0
t (v)

)
= φM1

t−τ−(v) ◦ φ
M0

τ−(v)(v)

= φM1
t ◦

{
φM1

−τ−(v) ◦ φ
M0

τ−(v)(v)
}

= φM1
t

(
Ψ(v)

)
.

This lemma will give us a way of showing that certain manifolds with
boundary are boundary rigid by using rigidity results for geodesic flows
on closed manifolds. We will return to this later on, but we finish this
paper by showing that the existence of a geodesic conjugacy implies
equality of volumes.

4. Proof of main theorem

In this section we prove our main theorem. Most of the ideas in this
section were known to Gromov (see [7, section 5.5]) in different settings.
However some modification are needed and so we will present them in
our setting. The notion of geodesic conjugacy came up in Gromov’s work
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on the Riemannian manifolds in [7]. The geodesic conjugacy of Croke-
Kleiner’s proof implies that it can be extended to Finsler manifolds with
little modification as follows (see [6, Lemma 2.1]).

Theorem 4.1. Let (M,F0) and (M,F1) be simple Finsler manifolds
with the same boundary ∂M. If distF0(p, q) = distF1(p, q) for all p, q ∈
∂M, then volF0(M) = volF1(M).

Proof. By Lemma 3.2 we have C∞-geodesic conjugacy Ψ : SM0 →
SM1 with Ψ|S∂MM = Id . Let ωi be the Hilbert 1-forms on (M,Fi) and
Xω0 be the Reeb field of ω0. By Cartan’s identity we have

iXω0
dω0 = LXω0

ω0 − diXω0
ω0 = 0

and

iXω0
d(Ψ∗ω1) = LXω0

(Ψ∗ω1)− diXω0
(Ψ∗ω1) = 0.

Let

ωt := (1− t) · ω0 + t · (Ψ∗ω1)

for 0 ≤ t ≤ 1, X := Xω0 , and ω̇t := d
dtωt = −ω0 + Ψ∗ω1. Then clearly

iX ω̇t = 0 and iXdωt = 0; in particular ω̇t|∂SM = 0. We will show that

d

dt

∫
SM

ωt ∧ (dωt)
n−1 = 0,

whence the result follows. Indeed,
(4.1)
d

dt

∫
SM

ωt∧(dωt)
n−1 =

∫
SM

ω̇t∧(dωt)
n−1+(n−1)

∫
SM

ωt∧(dω̇t)∧(dωt)
n−2.

Since iX
(
ω̇t∧ (dωt)

n−1) = 0 and ω̇t∧ (dωt)
n−1 is a top dimensional form

it follows that ω̇t ∧ (dωt)
n−1 = 0. Next, we note that

d
(
ωt ∧ ω̇t ∧ (dωt)

n−2) = ω̇t ∧ (dωt)
n−1 − ωt ∧ dω̇t ∧ (dωt)

n−2

+ ωt ∧ ω̇t ∧ d
(
(dωt)

n−2)
= −ωt ∧ dω̇t ∧ (dωt)

n−2.

This shows that the first integral in (4.1) is zero, and the second is the
integral of an exact form, and thus by Stokes’ theorem is equal to

−(n− 1)

∫
∂SM

ωt ∧ ω̇t ∧ (dωt)
n−2,

which is certainly zero since ω̇t|∂SM = 0.
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